organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

T. Ravishankar,^a K. Chinnakali,^b† P. Rajakumar,^c V. Murali,^c Anwar Usman^d and Hoong-Kun Fun^d*

^aDepartment of Physics, Deen Dayal
Engineering College, Kunnavalam 600 210,
Thiruvallur District, Tamil Nadu, India,
^bDepartment of Physics, Anna University,
Chennai 600 025, India, ^cDepartment of
Organic Chemistry, University of Madras,
Guindy Campus, Chennai 600 025, India, and
^dX-ray Crystallography Unit, School of Physics,
Universiti Sains Malaysia, 11800 USM, Penang,
Malaysia

† Additional correspondence author, e-mail: kali@annauniv.edu.

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.064 wR factor = 0.143 Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

7,14-Dioxatetracyclo[14.2^{4,5}.2^{19,20}.2^{21,22}.2^{23,24}]tetracosa-1,3,5,9,11,15,17,19,21,23-decaene

In the title molecule, $C_{22}H_{18}O_2$, the dihedral angles formed by the planes of the benzene rings are 62.6 (1), 66.1 (1) and 51.4 (1)°. The cavity enclosed by the three benzene rings is approximately 21.5 Å² in area. In addition to van der Waals interactions, the crystal structure is stabilized by weak C– $H \cdots \pi$ and C– $H \cdots O$ interactions.

Stilbene-based cyclophanes possess novel optical properties

due to their ability to exhibit cis-trans isomerization (Tanner

& Wennerstrom, 1981). Such a class of cyclophanes, called

stilbenophanes, can be obtained by the McMurry coupling

technique (Furstner & Bogdanovic, 1996). Treatment of the dialdehyde derived by *o*-alkylation of *p*-hydroxybenzaldehyde

with *p*-xylenyl dibromide with TiCl₄ and Zn in THF afforded

the title compound, (I) (Murali, 2002); we report here its

Comment

crystal structure.

Received 24 January 2003 Accepted 31 January 2003 Online 7 February 2003

(I)

In the title molecule, the benzene rings A (C2–C7), B (C9–C14) and C (C17–C22) are slightly puckered, with *para* C atoms lying on the same side of the plane of the remaining four atoms [-0.048 (2) and -0.037 (2) Å in ring A, 0.040 (2) and 0.049 (2) Å in ring B, and 0.037 (2) and 0.036 (2) Å in ring C]. Similar puckering in the benzene rings of a cyclophane have been reported by Hanson & Rohrl (1972).

The average C–C bond length in the three benzene rings is 1.382 (3) (ring A), 1.385 (3) (ring B) and 1.382 (3) Å (ring C). The average C–C bond length in the benzene rings of the *cis*-stilbene moiety is close to those values [1.378 (11) and 1.380 (9) Å] reported for such rings in an analogue of *cis*-stilbene (Bernstein, 1975). The C15–C16 bond length of 1.317 (4) Å is shorter than the mean value [1.34 Å] reported for analogues of *cis*-stilbene (Bernstein, 1995). The widening of the exocyclic bond angle O1–C20–C21 to 124.1 (2)° and consequent narrowing of O1–C20–C19 to 116.9 (2)° is due to the close approach [2.21 (3) Å] of atoms H1A and H21, attached to C1 and C21, respectively. Similarly, the widening of the bond angle O2–

C9–C14 to 124.8 (2)° may be due to the close approach [2.23 (3) Å] of atoms H8A and H14, attached to C8 and C14, respectively. The O–C–C angles at the sp^3 hybridized atoms, C1 [O1–C1–C2 = 111.6 (2)°] and C8 [O2–C8–C5 = 111.7 (2)°], deviate somewhat from the ideal tetrahedral value.

The weighted least-squares plane through ring A makes dihedral angles of 62.6 (1) and 66.1 (1)°, respectively, with the planes through rings B and C. The dihedral angle between the mean planes of the two benzene rings (B and C) of the *cis*stilbene moiety is 51.4 (1)°, compared to 62° in 1,2-diphenylcyclopentene (Bernstein, 1975), and 62.1 (4) (molecule A) and 52.7 (4)° (molecule B) in 2,3-diphenylmaleic anhydride (Yoon *et al.*, 1995). The torsion angle C12–C15–C16–C17 of -7.0 (4)° is close to the value of -7.5° for 1,2-diphenylcyclopentene (Bernstein, 1975) and to the theoretically calculated value of -9° for *cis*-stilbene (Bernstein, 1975). The size of the cavity enclosed by the three benzene rings can be approximately measured as the area enclosed by $C1\cdots C8\cdots C15-C16\cdots C1$, 21.5 Å².

In addition to van der Waals interactions, the crystal structure is stabilized by weak $C-H\cdots O$ and $C-H\cdots \pi$ interactions involving screw- and glide-related molecules (Table 2).

Experimental

Reaction of *p*-xylenyl dibromide with *p*-hydroxybenzaldehyde in anhydrous DMF and in the presence of K_2CO_3 at 343 K for 48 h gave *p*-bis(*p*-formylphenoxymethyl)benzene. Treatment of *p*-bis(*p*formylphenoxymethyl)benzene with 5 equivalents of TiCl₄ and 10 equivalents of Zn in dry THF for 24 h under high dilution conditions afforded the title compound in 53% yield. It was purified by column chromatography (SiO₂; hexane–chloroform = 8:2) and single crystals suitable for X-ray study were grown by vapor diffusion of hexane into a solution of the title compound in chloroform.

Crystal data

$C_{22}H_{18}O_2$
$M_r = 314.36$
Monoclinic, $P2_1/n$
$a = 9.5687 (2) \text{ Å}_{2}$
b = 10.5926 (2) Å
c = 16.6960 (2) Å
$\beta = 95.423 \ (1)^{\circ}$
$V = 1684.69 (5) \text{ Å}^3$
Z = 4
Data collection

Siemens SMART CCD areadetector diffractometer

 ω scans Absorption correction: none 9778 measured reflections 4108 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.143$ S = 0.824107 reflections 290 parameters All H-atom parameters refined $D_x = 1.239 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 4210 reflections $\theta = 2.6-28.3^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 (2) K Block, colourless 0.42 × 0.26 × 0.16 mm

1784 reflections with $I > 2\sigma(I)$ $R_{int} = 0.114$ $\theta_{max} = 28.3^{\circ}$ $h = -12 \rightarrow 12$ $k = -14 \rightarrow 13$ $l = -22 \rightarrow 10$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.015P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.30 \text{ e} \text{ Å}^{-3}$ Extinction correction: *SHELXTL* Extinction coefficient: 0.044 (4)

Figure 1

The structure of the title compound, with the atom-numbering scheme, and displacement ellipsoids drawn at the 30% probability level.

Table 1

Selected geometric parameters (Å, °).

O1-C20	1.379 (3) C5-C8		1.517 (3)
O1-C1	1.440 (3)	C12-C15	1.476 (4)
O2-C9	1.372 (3)	C15-C16	1.317 (4)
O2-C8	1.441 (3)	C16-C17	1.486 (3)
C1-C2	1.504 (3)		
$C_{20} = O_{1} = C_{1}$	116.77 (16)	$C_{11} - C_{12} - C_{13}$	116.7 (2)
C9-O2-C8	117.23 (19)	C11-C12-C15	122.5 (2)
O1-C1-C2	111.59 (19)	C22-C17-C18	117.1 (2)
O2-C8-C5	111.7 (2)	C18-C17-C16	123.0 (2)
O2-C9-C10	116.2 (2)	O1-C20-C19	116.9 (2)
O2-C9-C14	124.8 (2)	O1-C20-C21	124.1 (2)
C12-C15-C16-C17	-7.0 (4)		

Table 2

Hydrogen-bonding geometry (Å, °).

CgB and CgC denote the centroids of phenyl rings B and C, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C22-H22\cdots O2^{i}$	0.99 (2)	2.58 (2)	3.438 (3)	145 (2)
$C8-H8B\cdots CgC^{ii}$	1.03 (2)	2.75 (2)	3.715 (3)	157 (2)
$C7 - H7 \cdots CgB^{i}$	1.02 (2)	3.01 (2)	3.841 (3)	140 (1)

Symmetry codes: (i) $\frac{3}{2} - x$, $y - \frac{1}{2}, \frac{1}{2} - z$; (ii) $\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$.

H atoms were located from a difference map and both positional and isotropic displacement parameters were refined. For H atoms, the C-H range is 0.95 (2)–1.05 (3) Å and the $U_{\rm iso}$ range is 0.036 (5)– 0.102 (10) Å². The reflection (120) was removed during refinement, as the observed and calculated structure factors showed large disagreement. The high $R_{\rm int}$ value (0.114) and low ratio of observed to unique reflections (0.43) may be a result of the poor diffraction quality of the crystal.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

TR thanks the authorities of Deen Dayal Engineering College for their support. AU thanks Universiti Sains Malaysia for a Visiting Post-Doctoral Fellowship. HKF thanks the Malaysian Government and Universiti Sains Malaysia for research grant R&D No. 305/PFIZIK/610961.

References

Beddoes, R. L., Gorman, A. A. & McNeeney, S. P. (1993). Acta Cryst. C49, 1811–1813.

Bernstein, J. (1975). Acta Cryst. B31, 418-422.

- Furstner, A. & Bogdanovic, B. (1996). Angew. Chem. Int. Ed. Engl. 35, 2442– 2445.
- Hanson, A. W. & Rohrl, M. (1972). Acta Cryst. B28, 2287-2291.
- Murali, V. (2002). PhD thesis, University of Madras, India.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). PLATON. University of Utrecht, The Netherlands.
- Tanner, D. & Wennerstrom, O. (1981). Tetrahedron Lett. 22, 2313–2316.
- Yoon, M., Kim, Y. H., Cho, D. W., Suh, I.-H., Lee, J.-H., Ryu, B.-Y. & Park, J.-R. (1995). Acta Cryst. C51, 1374–1377.