Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

T. Ravishankar, ${ }^{\text {a }}$ K. Chinnakali, ${ }^{\mathbf{b}} \boldsymbol{\dagger}$

 P. Rajakumar, ${ }^{\text {c }}$ V. Murali, ${ }^{\text {c }}$Anwar Usman ${ }^{\text {d }}$ and Hoong-Kun Fun ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Physics, Deen Dayal Engineering College, Kunnavalam 600 210, Thiruvallur District, Tamil Nadu, India, ${ }^{\mathbf{b}}$ Department of Physics, Anna University, Chennai 600 025, India, ' Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ${ }^{\mathrm{d}}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

+ Additional correspondence author, e-mail: kali@annauniv.edu.

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.064$
$w R$ factor $=0.143$
Data-to-parameter ratio $=14.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

7,14-Dioxatetracyclo[14.2 $\left.2^{4,5} \cdot 2^{19,20} .2^{21,22} .2^{23,24}\right]$ -tetracosa-1,3,5,9,11,15,17,19,21,23-decaene

In the title molecule, $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{2}$, the dihedral angles formed by the planes of the benzene rings are 62.6 (1), 66.1 (1) and $51.4(1)^{\circ}$. The cavity enclosed by the three benzene rings is approximately $21.5 \AA^{2}$ in area. In addition to van der Waals interactions, the crystal structure is stabilized by weak C $\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

Stilbene-based cyclophanes possess novel optical properties due to their ability to exhibit cis-trans isomerization (Tanner \& Wennerstrom, 1981). Such a class of cyclophanes, called stilbenophanes, can be obtained by the McMurry coupling technique (Furstner \& Bogdanovic, 1996). Treatment of the dialdehyde derived by o-alkylation of p-hydroxybenzaldehyde with p-xylenyl dibromide with TiCl_{4} and Zn in THF afforded the title compound, (I) (Murali, 2002); we report here its crystal structure.

(I)

In the title molecule, the benzene rings $A(\mathrm{C} 2-\mathrm{C} 7), B$ (C9$\mathrm{C} 14)$ and $C(\mathrm{C} 17-\mathrm{C} 22)$ are slightly puckered, with para C atoms lying on the same side of the plane of the remaining four atoms [-0.048 (2) and -0.037 (2) \AA in ring $A, 0.040$ (2) and 0.049 (2) \AA in ring B, and 0.037 (2) and 0.036 (2) \AA in ring $C]$. Similar puckering in the benzene rings of a cyclophane have been reported by Hanson \& Rohrl (1972).

The average $\mathrm{C}-\mathrm{C}$ bond length in the three benzene rings is 1.382 (3) (ring A), 1.385 (3) (ring B) and 1.382 (3) \AA (ring C). The average $\mathrm{C}-\mathrm{C}$ bond length in the benzene rings of the cisstilbene moiety is close to those values $[1.378$ (11) and 1.380 (9) Å] reported for such rings in an analogue of cisstilbene (Bernstein, 1975). The C15-C16 bond length of 1.317 (4) \AA is shorter than the mean value $[1.34 \AA$] reported for analogues of cis-stilbene (Bernstein, 1975; Beddoes et al., 1993; Yoon et al., 1995). The widening of the exocyclic bond angle $\mathrm{O} 1-\mathrm{C} 20-\mathrm{C} 21$ to 124.1 (2) ${ }^{\circ}$ and consequent narrowing of $\mathrm{O} 1-\mathrm{C} 20-\mathrm{C} 19$ to $116.9(2)^{\circ}$ is due to the close approach [2.21 (3) \AA] of atoms $\mathrm{H} 1 A$ and H 21 , attached to C 1 and C 21 , respectively. Similarly, the widening of the bond angle O2-

Received 24 January 2003
Accepted 31 January 2003
Online 7 February 2003

C $9-\mathrm{C} 14$ to $124.8(2)^{\circ}$ may be due to the close approach [2.23 (3) Å] of atoms H8A and H14, attached to C8 and C14, respectively. The $\mathrm{O}-\mathrm{C}-\mathrm{C}$ angles at the $s p^{3}$ hybridized atoms, $\mathrm{C} 1\left[\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2=111.6(2)^{\circ}\right]$ and $\mathrm{C} 8[\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 5=$ 111.7 (2) ${ }^{\circ}$], deviate somewhat from the ideal tetrahedral value.

The weighted least-squares plane through ring A makes dihedral angles of $62.6(1)$ and $66.1(1)^{\circ}$, respectively, with the planes through rings B and C. The dihedral angle between the mean planes of the two benzene rings (B and C) of the cisstilbene moiety is $51.4(1)^{\circ}$, compared to 62° in 1,2-diphenylcyclopentene (Bernstein, 1975), and 62.1 (4) (molecule A) and 52.7 (4) ${ }^{\circ}$ (molecule B) in 2,3-diphenylmaleic anhydride (Yoon et al., 1995). The torsion angle $\mathrm{C} 12-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$ of $-7.0(4)^{\circ}$ is close to the value of -7.5° for 1,2 -diphenylcyclopentene (Bernstein, 1975) and to the theoretically calculated value of -9° for cis-stilbene (Bernstein, 1975). The size of the cavity enclosed by the three benzene rings can be approximately measured as the area enclosed by $\mathrm{C} 1 \cdots \mathrm{C} 8 \cdots \mathrm{C} 15-\mathrm{C} 16 \cdots \mathrm{C} 1,21.5 \AA^{2}$.

In addition to van der Waals interactions, the crystal structure is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving screw- and glide-related molecules (Table 2).

Experimental

Reaction of p-xylenyl dibromide with p-hydroxybenzaldehyde in anhydrous DMF and in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ at 343 K for 48 h gave p-bis(p-formylphenoxymethyl)benzene. Treatment of p-bis $(p$ formylphenoxymethyl)benzene with 5 equivalents of TiCl_{4} and 10 equivalents of Zn in dry THF for 24 h under high dilution conditions afforded the title compound in 53% yield. It was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$; hexane-chloroform $=8: 2$) and single crystals suitable for X-ray study were grown by vapor diffusion of hexane into a solution of the title compound in chloroform.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{2}$

$M_{r}=314.36$

Monoclinic, $P 2_{\mathrm{d}} / n$
$a=9.5687$ (2) A
$b=10.5926$ (2) \AA
$c=16.6960$ (2) \AA
$\beta=95.423$ (1) ${ }^{\circ}$
$V=1684.69(5) \AA^{3}$
$Z=4$
$D_{x}=1.239 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4210
\quad reflections
$\theta=2.6-28.3^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, colourless
$0.42 \times 0.26 \times 0.16 \mathrm{~mm}$

Data collection

Siemens SMART CCD areadetector diffractometer ω scans
Absorption correction: none 9778 measured reflections 4108 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.143$
$S=0.82$
4107 reflections
290 parameters
All H -atom parameters refined

1784 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.114$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-12 \rightarrow 12$
$k=-14 \rightarrow 13$
$l=-22 \rightarrow 10$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.015 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.28 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e} \mathrm{e}^{-3} \\
& \text { Extinction correction: } S H E L X T L \\
& \text { Extinction coefficient: } 0.044(4)
\end{aligned}
$$

Figure 1
The structure of the title compound, with the atom-numbering scheme, and displacement ellipsoids drawn at the 30% probability level.

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 20$	$1.379(3)$	$\mathrm{C} 5-\mathrm{C} 8$	$1.517(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.440(3)$	$\mathrm{C} 12-\mathrm{C} 15$	$1.476(4)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.372(3)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.317(4)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.441(3)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.486(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.504(3)$		
			$116.7(2)$
$\mathrm{C} 20-\mathrm{O} 1-\mathrm{C} 1$	$116.77(16)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$122.5(2)$
$\mathrm{C} 9-\mathrm{O} 2-\mathrm{C} 8$	$117.23(19)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 15$	$117.1(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$111.59(19)$	$\mathrm{C} 22-\mathrm{C} 17-\mathrm{C} 18$	$123.0(2)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 5$	$111.7(2)$	$\mathrm{C} 18-\mathrm{C} 17-\mathrm{C} 16$	$116.9(2)$
$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 10$	$116.2(2)$	$\mathrm{O} 1-\mathrm{C} 20-\mathrm{C} 19$	$124.1(2)$
$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 14$	$124.8(2)$	$\mathrm{O} 1-\mathrm{C} 20-\mathrm{C} 21$	
$\mathrm{C} 12-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$-7.0(4)$		

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).
$C g B$ and $C g C$ denote the centroids of phenyl rings B and C, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.99(2)$	$2.58(2)$	$3.438(3)$	$145(2)$
$\mathrm{C} 8-\mathrm{H} 8 B \cdots C g C^{\mathrm{ii}}$	$1.03(2)$	$2.75(2)$	$3.715(3)$	$157(2)$
$\mathrm{C} 7-\mathrm{H} 7 \cdots C g B^{\mathrm{i}}$	$1.02(2)$	$3.01(2)$	$3.841(3)$	$140(1)$
Symmetry codes: (i) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z ;\left(\right.$ (ii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$.				

H atoms were located from a difference map and both positional and isotropic displacement parameters were refined. For H atoms, the $\mathrm{C}-\mathrm{H}$ range is $0.95(2)-1.05$ (3) \AA and the $U_{\text {iso }}$ range is $0.036(5)-$ $0.102(10) \AA^{2}$. The reflection (120) was removed during refinement, as the observed and calculated structure factors showed large disagreement. The high $R_{\text {int }}$ value (0.114) and low ratio of observed to unique reflections (0.43) may be a result of the poor diffraction quality of the crystal.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

TR thanks the authorities of Deen Dayal Engineering College for their support. AU thanks Universiti Sains Malaysia for a Visiting Post-Doctoral Fellowship. HKF thanks the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 305/PFIZIK/610961.

References

Beddoes, R. L., Gorman, A. A. \& McNeeney, S. P. (1993). Acta Cryst. C49, 1811-1813.

Bernstein, J. (1975). Acta Cryst. B31, 418-422.
Furstner, A. \& Bogdanovic, B. (1996). Angew. Chem. Int. Ed. Engl. 35, 24422445.

Hanson, A. W. \& Rohrl, M. (1972). Acta Cryst. B28, 2287-2291.
Murali, V. (2002). PhD thesis, University of Madras, India.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). PLATON. University of Utrecht, The Netherlands.
Tanner, D. \& Wennerstrom, O. (1981). Tetrahedron Lett. 22, 2313-2316. Yoon, M., Kim, Y. H., Cho, D. W., Suh, I.-H., Lee, J.-H., Ryu, B.-Y. \& Park, J.-R. (1995). Acta Cryst. C51, 1374-1377.

